A 9,10-DIHYDROPHENANTHRENE FROM TUBERS OF EULOPHIA NUDA

S. R. BHANDARI and A. H. KAPADI

Chemistry Department, M.A.C.S. Research Institute, Law College Road, Pune 411 004, India

(Revised received 5 July 1982)

Key Word Index—Eulophia nuda; Orchidaceae; tubers; eulophiol; 1,5-dihydroxy-2,7-dimethoxy-9,10-dihydrophenanthrene.

Abstract—A crystalline 9,10-dihydrophenanthrene, named eulophiol, has been isolated from the tubers of *Eulophia nuda*. It was identified as 1,5-dihydroxy-2,7-dimethoxy-9,10-dihydrophenanthrene by ¹H and ¹³C NMR.

INTRODUCTION

Eulophia nuda (Amarkanda) is a small shrub found in the Himalayas, Asam, Burma and the south-west coast of India. The plant extract is used in medicine as an antitumor, anthelmintic, vermifuge and blood purifier [1]. Merchant et al. [2] isolated n-hexacosyl alcohol and lupeol from the tubers. We report here the structure of a new crystalline compound, eulophiol, isolated from an ethanol extract of the tubers.

Eulophiol, R = H
Eulophiol diacetate, R = COMe

RESULTS AND DISCUSSION

The molecular formula of eulophiol is C₁₆H₁₆O₄ based on elemental analysis and the mass spectrum (M⁺ 272). The ¹H NMR spectrum of eulophiol (Table 1) shows four benzylic protons with a characteristic shift of a 9,10-dihydrophenanthrene, further supported by its UV spectrum [4, 5]. The ¹³C NMR spectrum of eulophiol diacetate (Table 2) unequivocally establishes the assignment of the skeleton [3]. The IR spectrum shows the absence of a carbonyl group and the presence of a phenolic hydroxyl, (positive ferric chloride test).

Since eulophiol gives a diacetate and it has two D_2O exchangeable protons, two oxygen atoms are accounted for two hydroxyl groups. The other two oxygen atoms are two methoxyl groups as shown by the ¹H NMR spectrum and further supported by $[M-15]^+$ and $[M-30]^+$ peaks in the mass spectrum. The ¹H NMR shows four aromatic protons, two *ortho* coupled and two *meta* coupled. One of the *ortho* coupled protons is considerably downfield, which indicates that it is either at C-4 or C-5 [6, 7]. If this proton is at C-4, then the other proton must be at C-3. Similarly none of the *meta* coupled protons deviates from the normal aromatic proton shift indicating that C-5 is substituted. Hence, the remaining two protons are placed at C-6 and C-8, and eulophiol is

Table 1. 1H NMR data of eulophiol and its diacetate derivative

Type of proton(s)	Type of signal	Eulophiol (δ-values)	Eulophiol diacetate $(\delta$ -values)	Deshielding in diacetate $(\delta$ -values)
H-9 and H-10	br s (4H)	2.70	2.65	0.05
OMe-2	s (3H)	3.800	3.900	0.1
OMe-7	s (3H)	3.875	3.875	0
OH-1	$br s (1H)$ exch. D_2O	7.25	_	_
OH-5	br s (1H) exch. D ₂ O	8.37		_
MeOAc-1 or	s (3H)	_	2.325	_
MeOAc-5	s (3H)	_	2.375	_
H-6 H-8 meta coupled	d (1H, J = 2 Hz)	6.47	6.70	0.23
	d (1H, J = 2 Hz)	6.57	6.80	0.23
H-3	d~(1H, J = 8~Hz)	6.87	7.00	0.13
H-4 ortho coupled	d~(1H, J = 8Hz)	7.85	8.23	0.38

Table 2. ¹³C NMR shifts of eulophiol diacetate

Carbon	Shift		
1	148.2		
2	149.8		
3	113.4		
4	126.7		
5	149.5		
6	104.8		
7	157.3		
8	109.1		
9	29.6		
10	22.2		
11	131.9		
12	125.5		
13	120.5		
14	136.2		
2014	55.6		
2 × O <u>Me</u>	55.8		
2 × OCOMe	∫ 21.1		
2 × OCO <u>Me</u>	20.4		
2 × OCOMe	∫169.4		
2 × OCOME	168.4		

therefore, 1,2,5,7-tetrasubstituted-9,10-dihydrophenanthrene. Both the methoxyl protons similar to normal aromatic methoxyl proton positions, hence none of them could be at C-5 [8, 9]. Furthermore, the substituent at C-5 must be a hydroxyl since the proton at C-4 suffers a downfield shift of $\Delta \delta 0.38$ in the acetate derivative where it comes in the deshielding zone of the acetate carbonyl at C-5. In the diacetate derivative, all the protons suffer a downfield shift from $\Delta \delta 0.1$ to 0.38, hence the two hydroxyl groups must be in two different aromatic rings. The second hydroxyl function could be placed at C-1, which is meta to the proton at C-3 causing only a $\Delta \delta 0.13$ downfield shift, while this shift is $\Delta \delta 0.23$ where protons are ortho or para with respect to the acetate group, e.g. protons at C-6 and C-8.

Thus, the structure of eulophiol is established as 1,5-dihydroxy-2,7-dimethoxy-9,10-dihydrophenanthrene. Only one of the methoxyl groups suffers a deshielding of 0.1 ppm in the diacetate, which is consistent with the proposed structure, because the acetoxy group at C-1 can cause deshielding of the *ortho* methoxyl at C-2. The

assignment of the methoxyl groups is further supported by a nuclear Overhauser effect experiment. When both methoxyl groups are irradiated simultaneously, there is an enhancement of intensity by 12% of the H-6 and H-8 signals and by 18% of the H-3 signal.

EXPERIMENTAL

Mps are uncorr. UV spectra were recorded in MeOH, IR spectra in KBr discs and ¹H NMR spectra in CD₃COCD₃ using TMS int. standard at 80 MHz.

Isolation of eulophiol. E. nuda tubers were repeatedly extracted with EtOH. Most of the EtOH was removed in vacuo, diluted with H_2O and extracted with CHCl₃. The CHCl₃ extract was chromatographed on Si gel. The fraction eluted with C_6H_6 -MeOH (19:1) was further purified by prep. TLC on Si gel G using C_6H_6 -MeOH (97:3). Eulophiol crystallized from CHCl₃ as needles, yield 0.21%, mp 202–203°. (Found: C, 70.36; H, 5.87; $C_{16}H_{16}O_4$ requires: C, 70.60; H, 5.90.) It gave a positive FeCl₃ test. UV $\lambda_{\rm max}$ nm (log ε): 308.4 (4.05), 281.7 (4.31), 214 (4.59). IR $\nu_{\rm max}^{\rm KBr}$ cm⁻¹: 3500, 2950, 1610, 1480. ¹H NMR: Table 1. MS m/z: 272 [M]⁺, 257 [M-15]⁺, 242 [M-30]⁺, 239, 229, 214, etc.

The diacetate of eulophiol was prepared by acetylation with Ac_2O -pyridine at ambient temp. for 24 hr. It crystallized as needles, mp 143°. (Found: C, 67.36; H, 5.69; $C_{20}H_{20}O_6$ requires: C, 67.2; H, 5.75%.) UV λ_{max} nm (log ϵ): 280 (4.34), 210 (4.53). IR ν_{max}^{KBr} cm⁻¹: 1720, 1250. ¹H NMR: Table 1; ¹³C NMR: Table 2.

Acknowledgement—Thanks are due to Dr. D. S. Datar and Dr. M. M. Mahendru for their keen interest and helpful suggestions, and to the Director, M.A.C.S. for providing facilities.

REFERENCES

- Sastri, B. N. (ed.) (1952) The Wealth of India Vol. III, p. 221. C.S.I.R., New Delhi.
- Merchant, J. R., Shah, R. J. and Hirwe, S. N. (1962) Curr. Sci. 31, 95.
- Pelletier, S. W., Mody, N. V., Bhattacharyya, J. and Miles, H. (1978) Tetrahedron Letters 425.
- Cross, A. D., Carpio, H. and Crabbe, P. (1963) J. Chem. Soc. 5539.
- 5. Govindachari, T. R., Laximikantam, M. V., Nagarajan, K. and Pai, B. R. (1958) Tetrahedron 4, 854.
- 6. Erdtman, H. and Ronlan, A. (1969) Acta Chem. Scand. 23, 249.
- 7. Fahey, R. C. and Graham, G. C. (1966) J. Phys. Chem. 69, 4417.
- 8. Vernengo, M. J. (1963) Experientia 19, 294.
- Harris, W. M. and Geismann, T. A. (1965) J. Org. Chem. 30, 432.